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COMMENT

Second-order differential equations and non-conservative
Lagrangian mechanics
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Spain

1 Departamento de Geometria, Instituto de Matematica, Universidade Federal Fluminense,
24000 Niteréi, RJ, Brazil

Received 28 April 1987

Abstract. We give an extension to non-conservative Lagrangian systems of a previous work
published in this journal.

In a recent paper published in this journal, Sarlet et al (1984) proposed a new look
at the geometrical formulation of Lagrangian theory. Their basic idea consists of
establishing a relation in which a second-order differential equation is a Lagrange
equation. The authors consider a special set of 1-forms, denoted here by Aé and
defined by

Al={a e A (TM); (%< J*)(a) = a}

where ¢ is a second-order differential equation, A'(TM) is the set of all 1-forms on
TM, the tangent bundle of a m-dimensional manifold M, %, is the Lie derivative and
J* is the adjoint endomorphism on A'(TM) induced by the almost tangent structure
J:T(TM)- T(TM) on the double tangent bundle T(TM) of M.

If we associate to each ¢ an appropriate 1-form « belonging to A}, then we may
obtain the Lagrange equations of motion. For this a must be exact, a =dL, and L
must be a regular function on TM.

It is the purpose of the present comment to enlarge such a point of view to the
non-conservative regular situation.

Let us first recall that a mechanical system # is a triple (M, F,T), where M is a
smooth finite manifold of dimension m, F is a smooth function on TM and T is a
semibasic Pfaft form on TM, called the force field. Suppose that the closed 2-form
wp = —dd,;F on TM is symplectic. Then it can be shown that there is a unique semispray
¢ satisfying the equation

where Er = V(F)~ F is the energy of F. In local coordinates (a®, v*) expression (1)
assumes the form

AN :
de\ov? an‘- Xa: (2)
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A mechanical system A is conservative if the force field I is a closed semibasic form.
If there is a smooth function U: TM - R such that ' = p%,(dU) (where py,: TM > M
is the canonical projection) then .# is said to be a Lagrangian system. In such a case
(2) assumes the form

d ( aL) L 0
dr\ov?®/) ag* "~
where L is defined by L= F+ U o p,,.
In this comment we will consider non-conservative mechanical systems, i.e. where
the force field T is not closed. As the results obtained are similar to those of Sarlet et
al we will discuss here only the main modifications.

Let £ be a semispray on TM, i.e. a second-order differential equation. We associate
to £ a R-bilinear operator

E
ANTM) x A (TM) —> AY(TM)
defined by E; ,;(a, B) = E,a +J*B. Now, let us put
Aé,l :ker Ef‘J

AL_J ={(a, B)e A (TM)x A(TM); E.a = -J*B}.
The elements of A}, are locally of the form

a= (g(&A)+B_A) qu+ Qa dov*

B=Badg"+B,dv*.
We note that E, ,(fa, fB) = (/W J*a)+fE, ;(a, B). Hence A}‘J is a real vector space
but is not a module over the ring of functions. It is, however, a module over the ring
of the constants of motion. Next we shall relate A; and A;,. Let j:A'(TM)~

A'(TM)x A'(TM), j(a) = (a, 0), be the canonical injection. Then E, , < j= E, and so
j(Aé)C Alg,J-

(3)

Definition. A pair of 1-forms (a, 8) is said to be regular if (a, )€ A, and the 2-form
w, = —d(J*a) is symplectic. The form 8 is called the force field A semispray ¢ is
called a non-conservative vector field if there is a regular pair (o, 8) € A;‘, such that a
is exact, say @ =dF.

The condition E,(dF) = —J*B which characterises £ may be rewritten in the form

def

ig“’F=dEF+r (wg = wWyr) (4)
where I'= —J*B is a semibasic form on TM and, taking into account (3), from (4) we
deduce

oF oF _
f(M—A>—a—q‘;=—BA I<A=sm

which yields a system of Lagrange equations with non-conservative forces. Similar
results presented by Sarlet et al may be re-obtained. For instance, it is easy to see that
‘if R is a tensor field of type (1.1) on TM satisfying JR = RJ and J(¥,R) =0, then
R*< E,,;=E,,c(R*xR*) and so R*x R* preserves A} .
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We may also introduce a kind of dual of A;, (see Sarlet et al 1984). We define a
subset of x(TM) by
xe={Yex(TM); J[£ Y] =0}

Then yx, is a real vector space, but as J[£ fY]=[&f, JY]+ fI[£ Y] one has that x; is
not a €(TM) module. However, it is a module over the constants of motion. Locally
the elements of x, have the form

3 3
Y=Y*—+&YYH—.
an & )6UA

If we define (Y, (o, B)) = ({Y, a), (Y, B)) then we have
(Y, (a, B)) = ((£(@a)+Ba) YA+ Gal(Y?), BAY +BaE(YH)) (5)

for all (a, B)eA;,, Yex, As in the conservative situation, we deduce that if (5)
holds for all (a, B)€ A, , then Y must be in x, and (a, B) €Ay ,.

To end this comment let us examine symmetries which are not of point type, i.e.
vector fields Y on TM satisfying (£, Y]=0. We recall that for any vector field Y on
TM there is a unique tensor field Ry of type (1.1) on TM such that (Ry —#yJ)oJ =0,
RyJ=JRy and J(&,Ry)=0. The tensor Ry is given by

Ry = (LYWL + (L1 i)

Proposition. 1f Y is a symmetry of ¢ and (a, 8) € A}, satisfies

J*R{a =J* df RYpB=dg (6)
for some f, g€ $°(TM), then

(a',BYeAy,
where a' = £ya —~d(£f) and B'=FB —d(£g).

Proof. From the above definition of a’B8’, we have
J¥a' =J*¥(Fya)—J* d(£f)
=&y (J*a)— (L) a —J* d(£f)
since (LyJ)* =%y o J*—J*o #,. Therefore we have
Le(J*a') = L(Ey(J*a)) — L (Ly D) a) — £ (J* d(£f))
=Ly (Le(J*a)) = L((LyT) a) - L(J* d(&f))
(since Ly o Fy=Fro Ly)
=Lya+Ly(J*B)— L (LyI)* a)~ L (J* d(£f)). (7
On the other hand, (R¥a, R¥B)e€ A} ,; then we have
Ria=%,(J*RYa)~J*R}B = L. (J* df) - J*(dg).

The vector field Y is a symmetry of & therefore Yex, In such a case Ry =
(Ly ) (&), because

(g[g‘y].]).] = —.’(f[g»y].]) =0
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since J(£,J) vanishes for all Z € y(TM). Therefore we deduce that
Rya =(LJ*)NLyJ*)a = (L)  df + J* L (df) - T*(dg).
Operating on both sides with (£, J)*, we see that

(Ly)*a=df+J* d(&f)+T*(dg). (8)
Therefore, taking the Lie derivative of (8) with respect to £ we obtain
Le(J*a')=Lya+ Ly (J*B)—d(&f) — £,(J* dg). 9)

With (9), the relation (7) reduces to
F(J*a') = Lya+ Ly (J*B)—d(Ef) - Le(J* dg).
Thus we have
o' =L (J*a")=-F(J*B)+ & (J* dg)
=—(LyJ)B* =T (&B) + (L J)* dg +T* d(¢ég).
But from (6) we deduce
(L) (EyJ)*B =dg.
Now, operating again on both sides with (£,J)*, we obtain
(ZyI)*B =(LJ)* dg.
Hence
a'—ZL(J*a)=-J*(£vB - d(&g))
or, equivalently,
Eqa'=-J*g’
and so (a',B')edy,.

We invite the reader to establish a generalisation of Noether’s theorem for the present
situation, as was proposed by Sarlet e? al.
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