

Home Search Collections Journals About Contact us My IOPscience

Second-order differential equations and non-conservative Lagrangian mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1987 J. Phys. A: Math. Gen. 20 5393 (http://iopscience.iop.org/0305-4470/20/15/050)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 20:53

Please note that terms and conditions apply.

COMMENT

Second-order differential equations and non-conservative Lagrangian mechanics

Manuel de León† and Paulo R Rodrigues‡

⁺ CECIME, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain

‡ Departamento de Geometria, Instituto de Matemática, Universidade Federal Fluminense, 24000 Niterói, RJ, Brazil

Received 28 April 1987

Abstract. We give an extension to non-conservative Lagrangian systems of a previous work published in this journal.

In a recent paper published in this journal, Sarlet *et al* (1984) proposed a new look at the geometrical formulation of Lagrangian theory. Their basic idea consists of establishing a relation in which a second-order differential equation is a Lagrange equation. The authors consider a special set of 1-forms, denoted here by Δ_{ξ}^{1} and defined by

$$\Delta_{\mathcal{E}}^{1} = \{ \alpha \in \Delta^{1}(TM); (\mathscr{L}_{\mathcal{E}} \circ J^{*})(\alpha) = \alpha \}$$

where ξ is a second-order differential equation, $\Delta^1(TM)$ is the set of all 1-forms on TM, the tangent bundle of a *m*-dimensional manifold M, \mathscr{L}_{ξ} is the Lie derivative and J^* is the adjoint endomorphism on $\Delta^1(TM)$ induced by the almost tangent structure $J: T(TM) \rightarrow T(TM)$ on the double tangent bundle T(TM) of M.

If we associate to each ξ an appropriate 1-form α belonging to Δ_{ξ}^{1} , then we may obtain the Lagrange equations of motion. For this α must be exact, $\alpha = dL$, and L must be a regular function on TM.

It is the purpose of the present comment to enlarge such a point of view to the non-conservative regular situation.

Let us first recall that a mechanical system \mathcal{M} is a triple (M, F, Γ) , where M is a smooth finite manifold of dimension m, F is a smooth function on TM and Γ is a semibasic Pfaff form on TM, called the force field. Suppose that the closed 2-form $\omega_F = -dd_J F$ on TM is symplectic. Then it can be shown that there is a unique semispray ξ satisfying the equation

$$i_{\xi}\omega_F = \mathrm{d}E_F + \Gamma \tag{1}$$

where $E_F = V(F) - F$ is the energy of F. In local coordinates (a^A, v^A) expression (1) assumes the form

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial F}{\partial v^A}\right) - \frac{\partial F}{\partial q^A} = -\chi_A.$$
(2)

0305-4470/87/155393+04\$02.50 © 1987 IOP Publishing Ltd 5393

A mechanical system \mathcal{M} is conservative if the force field Γ is a closed semibasic form. If there is a smooth function $U: TM \to R$ such that $\Gamma = p_M^*(dU)$ (where $p_M: TM \to M$ is the canonical projection) then \mathcal{M} is said to be a Lagrangian system. In such a case (2) assumes the form

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial v^A} \right) - \frac{\partial L}{\partial q^A} = 0$$

where L is defined by $L = F + U \circ p_M$.

In this comment we will consider non-conservative mechanical systems, i.e. where the force field Γ is not closed. As the results obtained are similar to those of Sarlet *et al* we will discuss here only the main modifications.

Let ξ be a semispray on *TM*, i.e. a second-order differential equation. We associate to ξ a *R*-bilinear operator

$$\Delta^{1}(TM) \times \Delta^{1}(TM) \xrightarrow{E_{\xi,J}} \Delta^{1}(TM)$$

defined by $E_{\xi,J}(\alpha,\beta) = E_{\xi}\alpha + J^*\beta$. Now, let us put

$$\Delta_{\xi,J}^1 = \ker E_{\xi,J}$$

i.e.

$$\Delta^{1}_{\xi,J} = \{ (\alpha, \beta) \in \Delta^{1}(TM) \times \Delta^{1}(TM); E_{\xi}\alpha = -J^{*}\beta \}.$$

The elements of $\Delta_{\xi,J}^1$ are locally of the form

$$\alpha = (\xi(\bar{\alpha}_A) + \bar{\beta}_A) dq^A + \bar{\alpha}_A dv^A$$

$$\beta = \beta_A dq^A + \bar{\beta}_A dv^A.$$
 (3)

We note that $E_{\xi,J}(f\alpha, f\beta) = (\xi f)(J^*\alpha) + fE_{\xi,J}(\alpha, \beta)$. Hence $\Delta_{\xi,J}^1$ is a real vector space but is not a module over the ring of functions. It is, however, a module over the ring of the constants of motion. Next we shall relate Δ_{ξ}^1 and $\Delta_{\xi,J}^1$. Let $j:\Delta^1(TM) \rightarrow \Delta^1(TM) \times \Delta^1(TM), j(\alpha) = (\alpha, 0)$, be the canonical injection. Then $E_{\xi,J} \circ j = E_{\xi}$ and so $j(\Delta_{\xi}^1) \subset \Delta_{\xi,J}^1$.

Definition. A pair of 1-forms (α, β) is said to be regular if $(\alpha, \beta) \in \Delta_{\xi,J}^1$ and the 2-form $\omega_{\alpha} = -d(J^*\alpha)$ is symplectic. The form β is called the *force field*. A semispray ξ is called a *non-conservative* vector field if there is a regular pair $(\alpha, \beta) \in \Delta_{\xi,J}^1$ such that α is exact, say $\alpha = dF$.

The condition $E_{\xi}(dF) = -J^*\beta$ which characterises ξ may be rewritten in the form

$$i_{\xi}\omega_{F} = \mathrm{d}E_{F} + \Gamma \qquad (\omega_{F} \stackrel{\mathrm{der}}{=} \omega_{\mathrm{d}F}) \tag{4}$$

where $\Gamma = -J^*\beta$ is a semibasic form on *TM* and, taking into account (3), from (4) we deduce

$$\xi\left(\frac{\partial F}{\partial v^A}\right) - \frac{\partial F}{\partial q^A} = -\bar{\beta}_A \qquad 1 \le A \le m$$

which yields a system of Lagrange equations with non-conservative forces. Similar results presented by Sarlet *et al* may be re-obtained. For instance, it is easy to see that 'if R is a tensor field of type (1.1) on TM satisfying JR = RJ and $J(\mathscr{L}_{\xi}R) = 0$, then $R^* \circ E_{\xi,J} = E_{\xi,J} \circ (R^* \times R^*)$ and so $R^* \times R^*$ preserves $\Delta^1_{\xi,J}$ '.

We may also introduce a kind of dual of $\Delta_{\xi,J}^1$ (see Sarlet *et al* 1984). We define a subset of $\chi(TM)$ by

$$\chi_{\xi} = \{ Y \in \chi(TM); J[\xi, Y] = 0 \}.$$

Then χ_{ξ} is a real vector space, but as $J[\xi, fY] = [\xi f, JY] + fJ[\xi, Y]$ one has that χ_{ξ} is not a $\mathscr{C}^{\infty}(TM)$ module. However, it is a module over the constants of motion. Locally the elements of χ_{ξ} have the form

$$Y = Y^{A} \frac{\partial}{\partial q^{A}} + \xi(Y^{A}) \frac{\partial}{\partial v^{A}}.$$

If we define $\langle Y, (\alpha, \beta) \rangle = (\langle Y, \alpha \rangle, \langle Y, \beta \rangle)$ then we have

$$\langle Y, (\alpha, \beta) \rangle = \left(\left(\xi(\bar{\alpha}_A) + \bar{\beta}_A \right) Y^A + \bar{\alpha}_A \xi(Y^A), \beta_A Y^A + \bar{\beta}_A \xi(Y^A) \right)$$
(5)

for all $(\alpha, \beta) \in \Delta_{\xi,J}^1$, $Y \in \chi_{\xi}$. As in the conservative situation, we deduce that if (5) holds for all $(\alpha, \beta) \in \Delta_{\xi,J}$ then Y must be in χ_{ξ} and $(\alpha, \beta) \in \Delta_{\xi,J}^1$.

To end this comment let us examine symmetries which are not of point type, i.e. vector fields Y on TM satisfying $[\xi, Y] = 0$. We recall that for any vector field Y on TM there is a unique tensor field R_Y of type (1.1) on TM such that $(R_Y - \mathcal{L}_Y J) \circ J = 0$, $R_Y J = JR_Y$ and $J(\mathcal{L}_{\xi}R_Y) = 0$. The tensor R_Y is given by

$$R_Y = (\mathscr{L}_Y J)(\mathscr{L}_{\xi} J) + (\mathscr{L}_{[\xi,J]} J)J.$$

Proposition. If Y is a symmetry of ξ and $(\alpha, \beta) \in \Delta^{1}_{\xi,J}$ satisfies

$$J^* R^*_Y \alpha = J^* df \qquad R^*_Y \beta = dg \tag{6}$$

for some $f, g \in \mathscr{C}^{\infty}(TM)$, then

$$(\alpha', \beta') \in \Delta^1_{\xi, J}$$

where $\alpha' = \mathcal{L}_Y \alpha - d(\xi f)$ and $\beta' = \mathcal{L}_Y \beta - d(\xi g)$.

Proof. From the above definition of $\alpha'\beta'$, we have

$$J^* \alpha' = J^* (\mathscr{L}_Y \alpha) - J^* d(\xi f)$$
$$= \mathscr{L}_Y (J^* \alpha) - (\mathscr{L}_Y J)^* \alpha - J^* d(\xi f)$$

since $(\mathscr{L}_Y J)^* = \mathscr{L}_Y \circ J^* - J^* \circ \mathscr{L}_Y$. Therefore we have

$$\begin{aligned} \mathcal{L}_{\xi}(J^*\alpha') &= \mathcal{L}_{\xi}(\mathcal{L}_{Y}(J^*\alpha)) - \mathcal{L}_{\xi}((\mathcal{L}_{Y}J)^*\alpha) - \mathcal{L}_{\xi}(J^*\,\mathsf{d}(\xi f)) \\ &= \mathcal{L}_{Y}(\mathcal{L}_{\xi}(J^*\alpha)) - \mathcal{L}_{\xi}((\mathcal{L}_{Y}J)^*\alpha) - \mathcal{L}_{\xi}(J^*\,\mathsf{d}(\xi f)) \end{aligned}$$

(since $\mathscr{L}_{Y} \circ \mathscr{L}_{\xi} = \mathscr{L}_{\xi} \circ \mathscr{L}_{Y}$)

$$= \mathscr{L}_{Y}\alpha + \mathscr{L}_{Y}(J^{*}\beta) - \mathscr{L}_{\xi}((\mathscr{L}_{Y}J)^{*}\alpha) - \mathscr{L}_{\xi}(J^{*}d(\xi f)).$$
(7)

On the other hand, $(R_Y^*\alpha, R_Y^*\beta) \in \Delta_{\mathcal{E},J}^1$; then we have

$$R_Y^* \alpha = \mathscr{L}_{\xi}(J^* R_Y^* \alpha) - J^* R_Y^* \beta = \mathscr{L}_{\xi}(J^* df) - J^* (dg).$$

The vector field Y is a symmetry of ξ , therefore $Y \in \chi_{\xi}$. In such a case $R_Y = (\mathscr{L}_Y J)(\mathscr{L}_{\xi} J)$, because

$$(\mathscr{L}_{[\xi,Y]}J)J = -J(\mathscr{L}_{[\xi,Y]}J) = 0$$

since $J(\mathcal{L}_z J)$ vanishes for all $Z \in \chi(TM)$. Therefore we deduce that

$$R_Y^* \alpha = (\mathscr{L}_{\xi} J^*)(\mathscr{L}_Y J^*) \alpha = (\mathscr{L}_{\xi} J)^* \, \mathrm{d}f + J^* \mathscr{L}_{\xi}(\mathrm{d}f) - J^*(\mathrm{d}g).$$

Operating on both sides with $(\mathscr{L}_{\ell}J)^*$, we see that

$$(\mathscr{L}_Y J)^* \alpha = \mathrm{d}f + J^* \,\mathrm{d}(\xi f) + J^* (\mathrm{d}g). \tag{8}$$

Therefore, taking the Lie derivative of (8) with respect to ξ , we obtain

$$\mathscr{L}_{\xi}(J^*\alpha') = \mathscr{L}_{Y}\alpha + \mathscr{L}_{Y}(J^*\beta) - \mathsf{d}(\xi f) - \mathscr{L}_{\xi}(J^* \, \mathrm{d}g). \tag{9}$$

With (9), the relation (7) reduces to

$$\mathscr{L}_{\xi}(J^*\alpha') = \mathscr{L}_{Y}\alpha + \mathscr{L}_{Y}(J^*\beta) - \mathrm{d}(\xi f) - \mathscr{L}_{\xi}(J^*\,\mathrm{d}g).$$

Thus we have

$$\begin{aligned} \alpha' - \mathscr{L}_{\xi}(J^*\alpha') &= -\mathscr{L}_{Y}(J^*\beta) + \mathscr{L}_{\xi}(J^* \, \mathrm{d}g) \\ &= -(\mathscr{L}_{Y}J)\beta^* - J^*(\mathscr{L}_{Y}\beta) + (\mathscr{L}_{\xi}J)^* \, \mathrm{d}g + J^* \, \mathrm{d}(\xi g). \end{aligned}$$

But from (6) we deduce

$$(\mathscr{L}_{\xi}J)^*(\mathscr{L}_YJ)^*\beta = \mathrm{d}g$$

Now, operating again on both sides with $(\mathscr{L}_{\xi}J)^*$, we obtain

$$(\mathscr{L}_Y J)^* \beta = (\mathscr{L}_{\xi} J)^* \, \mathrm{d}g.$$

Hence

$$\alpha' - \mathscr{L}_{\xi}(J^*\alpha') = -J^*(\mathscr{L}_Y\beta - \mathsf{d}(\xi g))$$

or, equivalently,

$$E_{\xi}\alpha' = -J^*\beta'$$

and so $(\alpha', \beta') \in \Delta^1_{\xi, J}$.

We invite the reader to establish a generalisation of Noether's theorem for the present situation, as was proposed by Sarlet *et al.*

Reference

Sarlet W, Cantrijn F and Crampin M 1984 J. Phys. A: Math. Gen. 17 1999-2009