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COMMENT 

Second-order differential equations and non-conservative 
Lagrangian mechanics 

Manuel de Lebn+ and Paulo R Rodrigued 
+ CECIME, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid, 
Spain 
$ Departamento de Geometria, lnstituto de Matemitica, Universidade Federal Fluminense, 
24000 Niteroi, RJ, Brazil 

Received 28 April 1987 

Abstract. We give an extension to non-conservative Lagrangian systems of a previous work 
published in this journal. 

In  a recent paper published in this journal, Sarlet et a1 (1984) proposed a new look 
at the geometrical formulation of Lagrangian theory. Their basic idea consists of 
establishing a relation in which a second-order differential equation is a Lagrange 
equation. The authors consider a special set of 1-forms, denoted here by A: and 
defined by 

A: = { a  E A ’ (  T M ) ;  (Ye 0 J * ) ( a )  = a }  

where 6 is a second-order differential equation, A ’ ( T M )  is the set of all 1-forms on 
TM, the tangent bundle of a m-dimensional manifold M ,  Yc is the Lie derivative and 
J *  is the adjoint endomorphism on A ’ (  T M )  induced by the almost tangent structure 
J :  T (  T M )  + T (  T M )  on the double tangent bundle T (  T M )  of M.  

If we associate to each 6 an appropriate 1-form a belonging to A i ,  then we may 
obtain the Lagrange equations of motion. For this a must be exact, a =dL,  and L 
must be a regular function on TM. 

It is the purpose of the present comment to enlarge such a point of view to the 
non-conservative regular situation. 

Let us first recall that a mechanical system Ju is a triple ( M ,  F, r), where M is a 
smooth finite manifold of dimension m, F is a smooth function on TM and r is a 
semibasic Pfaff form on TM, called the force field. Suppose that the closed 2-form 
wF = -ddJF  on TM is symplectic. Then it can be shown that there is a unique semispray 
5 satisfying the equation 

(1) 
where EF = V ( F )  - F is the energy of E In local coordinates ( a A ,  u A )  expression (1) 
assumes the form 

i&JF = dEF + r 
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5394 M de Le& and P R Rodrigues 

A mechanical system At is conservative if the force field r is a closed semibasic form. 
If there is a smooth function U :  TM + R such that r = p*,(d U )  (where p,,,, : TM + M 
is the canonical projection) then is said to be a Lagrangian system. In such a case 
(2)  assumes the form 

where L is defined by L = F + U 0 pM. 
In this comment we will consider non-conservative mechanical systems, i.e. where 

the force field r is not closed. As the results obtained are similar to those of Sarlet et 
a1 we will discuss here only the main modifications. 

Let ( be a semispray on TM, i.e. a second-order differential equation. We associate 
to ( a R-bilinear operator 

a'( T M )  x A I (  T M )  Z A I (  T M )  

defined by Et,-,(@, p )  = E p  + J * p .  Now, let us put 

A k , J = k e r  E f , J  

i.e. 

A;., = { ( a ,  p )  E A'(  T M )  x A ' (  T M ) ;  E p  = - J * p } .  

The elements of A:,, are locally of the form 

a = ((( (YA) + @ A )  d q A  + E A  duA 

P = / I A ~ ~ ~ + B A ~ U ~ .  
(3) 

We note that Et,J(fa,fp) = ( ( f ) (J*a)+fEs , , (a ,  p ) .  Hence A:,, is a real vector space 
but is not a module over the ring of functions. It is, however, a module over the ring 
of the constants of motion. Next we shall relate A: and A i , J .  Let j : A ' ( T M ) +  
A'(  T M )  x A'(  T M ) ,  J ( a )  = ( a ,  0), be the canonical injection. Then E f , j  0 j = E, and so 
j (A:)  Ak,J. 

Dejinition. A pair of 1-forms ( a ,  p )  is said to be regular if ( a ,  p )  E A i .  and the 2-form 
w, = - d ( J * a )  is symplectic. The form p is called the force jield. A semispray ( is 
called a non-conseruatiue vector field if there is a regular pair ( a ,  p )  E A i 3 J  such that a 
is exact, say a = dF.  

The condition E , (dF)  = - J * p  which characterises 6 may be rewritten in the form 

where r = - J * p  is a semibasic form on TM and, taking into account (3) ,  from (4) we 
deduce 

which yields a system of Lagrange equations with non-conservative forces. Similar 
results presented by Sarlet et a1 may be re-obtained. For instance, it is easy to see that 
'if R is a tensor field of type (1.1) on TM satisfying JR  = R J  and J(L?<R) = 0, then 
R* 0 Et,j = E , ,  0 (R*  x R * )  and so R* x R *  preserves 
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We may also introduce a kind of dual of A:, (see Sarlet et al 1984). We define a 
subset of x( T M )  by 

X r = { Y E X ( T M ) ; J [ 5 ,  YI=O) .  

Then xr is a real vector space, but as J [ & , f Y ]  = [ (A  J Y ] + f J [ & ,  Y ]  one has that xc is 
not a %‘=( T M )  module. However, it is a module over the constants of motion. Locally 
the elements of ,ye have the form 

a a 
as av  

Y = YA__;i+ &( Y A ) a  

If we define ( Y, ( a ,  p ) )  = (( Y, a ) ,  ( Y, p ) )  then we have 

( Y ,  ( a ,  p ) ) = ( ( ~ ( a A ) + P A ) y A + a A 5 ( y A ) ,  ~ a y ~ + P A t ( y ~ ) )  ( 5 )  

for all (a, p )  E A i , , ,  Y E  x ~ .  As in the conservative situation, we deduce that if (5) 
holds for all ( a ,  p )  E A , ,  then Y must be in xc and ( a ,  p )  E Ai, ,  . 

To end this comment let us examine symmetries which are not of point type, i.e. 
vector fields Y on TM satisfying [& Y ]  = 0.  We recall that for any vector field Y on 
TM there i s  a unique tensor field RY of type (1.1) on TM such that ( RY - YYJ) 0 J = 0, 
RYJ = JRY and J ( L f t R Y )  = 0. The tensor R Y  is given by 

R Y  = (YYJ)(Y&+ (Y[€,,)J)J. 

Proposition. I f  Y is a symmetry of 5 and ( a ,  p )  E A;,, satisfies 

J*R*ya = J *  df 

for some f; g E ‘%=( T M ) ,  then 

R*yp = d g  

(a ’ ,  P ’ )  E A;,, 

where a ‘ = Y y . u - d ( 5 f )  and  p ’ = Y Y p - d ( 5 g ) .  

Proof: From the above definition of a’p’,  we have 

J*a’= J * ( Y Y a )  - J* d(5f) 

= Lfy ( J *  ) - ( L f y J ) *  - J* d (  [f) 

since (YYJ)* = YY 0 J *  - J *  0 3,. Therefore we have 

(since YY 0 YE = LfE 0 Y Y )  

= L f v a + Y Y ( J * p ) - Y ~ ( ( z v J ) * a ) - Y * ( J *  d(8f)). ( 7 )  
On the other hand, ( R $ q  R T p )  E A i , , ;  then we have 

R$a = 2 ~ ( J * R ~ a ) - J * R $ p = Y ~ ( J *  df) -J*(dg) .  

The vector field Y is a symmetry of 6, therefore Y EX*.  In such a case RY = 
( z Y J ) ( 2 * J ) ,  because 

(2[*, Y ] J ) J  = - J W [ r ,  Y ] J )  = 0 
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since J ( Y z J )  vanishes for all Z E x(  T M ) .  Therefore we deduce that 

R$CY = (T tJ*) (YyJ*)a  = (TeJ)* df+J*Tt(df)-J*(dg) .  

Operating on both sides with (T<J)*, we see that 

(TyJ)*a  = d f + J *  d((f)+J*(dg).  

Therefore, taking the Lie derivative of (8) with respect to 6, we obtain 

T ~ ( J * a ’ ) = 2 y a + T y ( J * P ) - d ( 5 f ) - T e ( J *  dg).  

With (9), the relation ( 7 )  reduces to 

2 c (  J*CY ’) = Tya + 2 y  ( J * p  ) - d(  (f) - Tt ( J* d g  ). 

Thus we have 

a’-Tc(J*a‘) = -2y(J*p)+Te(J*  dg)  

= - ( 2 y J ) p * - J * ( ~ y p ) + ( T e J ) *  d g + J *  d(&). 

But from ( 6 )  we deduce 

( T ~ J ) * ( ~ Y J ) * P  = dg. 

Now, operating again on both sides with (TtJ)*, we obtain 

(ZVJ)*p = (TeJ)* dg. 

Hence 

( Y ’ - ~ ~ ( J * ( Y ’ ) =  - J * ( Y y p  -d(&))  

or, equivalently, 

Eta’= - J * p ’  
and so (a’ ,  p ’ )  E A:,, . 

We invite the reader to establish a generalisation of Noether’s theorem for the present 
situation, as was proposed by Sarlet et al. 
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