Second-order differential equations and non-conservative Lagrangian mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 205393
(http://iopscience.iop.org/0305-4470/20/15/050)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 20:53

Please note that terms and conditions apply.

COMMENT

Second-order differential equations and non-conservative Lagrangian mechanics

Manuel de León \dagger and Paulo R Rodrigues \ddagger
* CECIME, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
\ddagger Departamento de Geometria, Instituto de Matemática, Universidade Federal Fluminense, 24000 Niterói, RJ, Brazil

Received 28 April 1987

Abstract

We give an extension to non-conservative Lagrangian systems of a previous work published in this journal.

In a recent paper published in this journal, Sarlet et al (1984) proposed a new look at the geometrical formulation of Lagrangian theory. Their basic idea consists of establishing a relation in which a second-order differential equation is a Lagrange equation. The authors consider a special set of 1 -forms, denoted here by Δ_{ξ}^{1} and defined by

$$
\Delta_{\xi}^{1}=\left\{\alpha \in \Delta^{1}(T M) ;\left(\mathscr{L}_{\xi} \circ J^{*}\right)(\alpha)=\alpha\right\}
$$

where ξ is a second-order differential equation, $\Delta^{\prime}(T M)$ is the set of all 1 -forms on $T M$, the tangent bundle of a m-dimensional manifold M, \mathscr{L}_{ξ} is the Lie derivative and J^{*} is the adjoint endomorphism on $\Delta^{1}(T M)$ induced by the almost tangent structure $J: T(T M) \rightarrow T(T M)$ on the double tangent bundle $T(T M)$ of M.

If we associate to each ξ an appropriate 1 -form α belonging to Δ_{ξ}^{1}, then we may obtain the Lagrange equations of motion. For this α must be exact, $\alpha=\mathrm{d} L$, and L must be a regular function on $T M$.

It is the purpose of the present comment to enlarge such a point of view to the non-conservative regular situation.

Let us first recall that a mechanical system \mathscr{M} is a triple (M, F, Γ), where M is a smooth finite manifold of dimension m, F is a smooth function on $T M$ and Γ is a semibasic Pfaff form on $T M$, called the force field. Suppose that the closed 2 -form $\omega_{F}=-\mathrm{dd}_{J} F$ on $T M$ is symplectic. Then it can be shown that there is a unique semispray ξ satisfying the equation

$$
\begin{equation*}
i_{\xi} \omega_{F}=\mathrm{d} E_{F}+\Gamma \tag{1}
\end{equation*}
$$

where $E_{F}=V(F)-F$ is the energy of F. In local coordinates (a^{A}, v^{A}) expression (1) assumes the form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial F}{\partial v^{A}}\right)-\frac{\partial F}{\partial q^{A}}=-\chi_{\mathrm{A}} . \tag{2}
\end{equation*}
$$

A mechanical system \mathcal{M} is conservative if the force field Γ is a closed semibasic form. If there is a smooth function $U: T M \rightarrow R$ such that $\Gamma=p_{M}^{*}\left(\mathrm{~d} U\right.$) (where $p_{M}: T M \rightarrow M$ is the canonical projection) then \mathscr{M} is said to be a Lagrangian system. In such a case (2) assumes the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial v^{A}}\right)-\frac{\partial L}{\partial q^{A}}=0
$$

where L is defined by $L=F+U \circ p_{M}$.
In this comment we will consider non-conservative mechanical systems, i.e. where the force field Γ is not closed. As the results obtained are similar to those of Sarlet et al we will discuss here only the main modifications.

Let ξ be a semispray on $T M$, i.e. a second-order differential equation. We associate to ξ a R-bilinear operator

$$
\Delta^{\prime}(T M) \times \Delta^{1}(T M) \xrightarrow{E_{\epsilon,}} \Delta^{\prime}(T M)
$$

defined by $E_{\xi, J}(\alpha, \beta)=E_{\xi} \alpha+J^{*} \beta$. Now, let us put

$$
\Delta_{\xi, J}^{1}=\operatorname{ker} E_{\xi, J}
$$

i.e.

$$
\Delta_{\xi, J}^{1}=\left\{(\alpha, \beta) \in \Delta^{\prime}(T M) \times \Delta^{\prime}(T M) ; E_{\xi} \alpha=-J^{*} \beta\right\} .
$$

The elements of $\Delta_{\xi, J}^{l}$, are locally of the form

$$
\begin{align*}
& \alpha=\left(\xi\left(\bar{\alpha}_{A}\right)+\bar{\beta}_{A}\right) \mathrm{d} q^{A}+\bar{\alpha}_{A} \mathrm{~d} v^{A} \\
& \beta=\beta_{A} \mathrm{~d} q^{A}+\bar{\beta}_{A} \mathrm{~d} v^{A} . \tag{3}
\end{align*}
$$

We note that $E_{\xi, J}(f \alpha, f \beta)=(\xi f)\left(J^{*} \alpha\right)+f E_{\xi, J}(\alpha, \beta)$. Hence $\Delta_{\xi, J}^{1}$ is a real vector space but is not a module over the ring of functions. It is, however, a module over the ring of the constants of motion. Next we shall relate Δ_{ξ}^{1} and $\Delta_{\xi, j}^{1}$. Let $j: \Delta^{1}(T M) \rightarrow$ $\Delta^{\prime}(T M) \times \Delta^{1}(T M), j(\alpha)=(\alpha, 0)$, be the canonical injection. Then $E_{\xi, j} \circ j=E_{\xi}$ and so $j\left(\Delta_{\xi}^{1}\right) \subset \Delta_{\xi, J}^{1}$.

Definition. A pair of 1 -forms (α, β) is said to be regular if $(\alpha, \beta) \in \Delta_{\xi, J}^{\xi}$ and the 2 -form $\omega_{\alpha}=-\mathrm{d}\left(J^{*} \alpha\right)$ is symplectic. The form β is called the force field. A semispray ξ is called a non-conservative vector field if there is a regular pair $(\alpha, \beta) \in \Delta_{\xi, J}^{1}$ such that α is exact, say $\alpha=\mathrm{d} F$.

The condition $E_{\xi}(\mathrm{d} F)=-J^{*} \beta$ which characterises ξ may be rewritten in the form

$$
\begin{equation*}
i_{\xi} \omega_{F}=\mathrm{d} E_{F}+\Gamma \quad\left(\omega_{F} \stackrel{\text { def }}{=} \omega_{\mathrm{d} F}\right) \tag{4}
\end{equation*}
$$

where $\Gamma=-J^{*} \beta$ is a semibasic form on $T M$ and, taking into account (3), from (4) we deduce

$$
\xi\left(\frac{\partial F}{\partial v^{A}}\right)-\frac{\partial F}{\partial q^{A}}=-\bar{\beta}_{A} \quad 1 \leqslant A \leqslant m
$$

which yields a system of Lagrange equations with non-conservative forces. Similar results presented by Sarlet et al may be re-obtained. For instance, it is easy to see that 'if R is a tensor field of type (1.1) on $T M$ satisfying $J R=R J$ and $J\left(\mathscr{L}_{\xi} R\right)=0$, then $R^{*} \circ E_{\xi, J}=E_{\xi,}, \circ\left(R^{*} \times R^{*}\right)$ and so $R^{*} \times R^{*}$ preserves $\Delta_{\xi, J}^{1}$, .

We may also introduce a kind of dual of $\Delta_{\xi, J}^{1}$ (see Sarlet et al 1984). We define a subset of $\chi(T M)$ by

$$
\chi_{\xi}=\{Y \in \chi(T M) ; J[\xi, Y]=0\} .
$$

Then χ_{ξ} is a real vector space, but as $J[\xi, f Y]=[\xi f, J Y]+f J[\xi, Y]$ one has that χ_{ξ} is not a $\mathscr{C}^{\infty}(T M)$ module. However, it is a module over the constants of motion. Locally the elements of χ_{ξ} have the form

$$
Y=Y^{A} \frac{\partial}{\partial q^{A}}+\xi\left(Y^{A}\right) \frac{\partial}{\partial v^{A}} .
$$

If we define $\langle Y,(\alpha, \beta)\rangle=(\langle Y, \alpha\rangle,\langle Y, \beta\rangle)$ then we have

$$
\begin{equation*}
\langle Y,(\alpha, \beta)\rangle=\left(\left(\xi\left(\bar{\alpha}_{A}\right)+\bar{\beta}_{A}\right) Y^{A}+\bar{\alpha}_{A} \xi\left(Y^{A}\right), \beta_{A} Y^{A}+\bar{\beta}_{A} \xi\left(Y^{A}\right)\right) \tag{5}
\end{equation*}
$$

for all $(\alpha, \beta) \in \Delta_{\xi, J}^{\mathrm{l}}, Y \in \chi_{\xi}$. As in the conservative situation, we deduce that if (5) holds for all $(\alpha, \beta) \in \Delta_{\xi, J}$ then Y must be in χ_{ξ} and $(\alpha, \beta) \in \Delta_{\xi, J}^{1}$.

To end this comment let us examine symmetries which are not of point type, i.e. vector fields Y on $T M$ satisfying $[\xi, Y]=0$. We recall that for any vector field Y on $T M$ there is a unique tensor field R_{Y} of type (1.1) on $T M$ such that ($R_{Y}-\mathscr{L}_{Y} J$) $J=0$, $R_{Y} J=J R_{Y}$ and $J\left(\mathscr{L}_{\xi} R_{Y}\right)=0$. The tensor R_{Y} is given by

$$
R_{Y}=\left(\mathscr{L}_{Y} J\right)\left(\mathscr{L}_{\xi} J\right)+\left(\mathscr{L}_{[\xi, J]} J\right) J .
$$

Proposition. If Y is a symmetry of ξ and $(\alpha, \beta) \in \Delta_{\xi, J}^{1}$ satisfies

$$
\begin{equation*}
J^{*} R_{Y}^{*} \alpha=J^{*} \mathrm{~d} f \quad R_{Y}^{*} \beta=\mathrm{d} g \tag{6}
\end{equation*}
$$

for some $f, g \in \mathscr{C}^{x}(T M)$, then

$$
\left(\alpha^{\prime}, \beta^{\prime}\right) \in \Delta_{\xi, J}^{1}
$$

where $\alpha^{\prime}=\mathscr{L}_{\curlyvee} \alpha-\mathrm{d}(\xi f)$ and $\beta^{\prime}=\mathscr{L}_{\curlyvee} \beta-\mathrm{d}(\xi g)$.
Proof. From the above definition of $\alpha^{\prime} \beta^{\prime}$, we have

$$
\begin{aligned}
J^{*} \alpha^{\prime} & =J^{*}\left(\mathscr{L}_{Y} \alpha\right)-J^{*} \mathrm{~d}(\xi f) \\
& =\mathscr{L}_{Y}\left(J^{*} \alpha\right)-\left(\mathscr{L}_{Y} J\right)^{*} \alpha-J^{*} \mathrm{~d}(\xi f)
\end{aligned}
$$

since $\left(\mathscr{L}_{Y} J\right)^{*}=\mathscr{L}_{Y} \circ J^{*}-J^{*} \circ \mathscr{L}_{Y}$. Therefore we have

$$
\begin{aligned}
\mathscr{L}_{\xi}\left(J^{*} \alpha^{\prime}\right) & =\mathscr{L}_{\xi}\left(\mathscr{L}_{Y}\left(J^{*} \alpha\right)\right)-\mathscr{L}_{\xi}\left(\left(\mathscr{L}_{Y} J\right)^{*} \alpha\right)-\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d}(\xi f)\right) \\
& =\mathscr{L}_{Y}\left(\mathscr{L}_{\xi}\left(J^{*} \alpha\right)\right)-\mathscr{L}_{\xi}\left(\left(\mathscr{L}_{Y} J\right)^{*} \alpha\right)-\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d}(\xi f)\right)
\end{aligned}
$$

(since $\left.\mathscr{L}_{Y} \circ \mathscr{L}_{\xi}=\mathscr{L}_{\xi} \circ \mathscr{L}_{Y}\right)$

$$
\begin{equation*}
=\mathscr{L}_{Y} \alpha+\mathscr{L}_{Y}\left(J^{*} \beta\right)-\mathscr{L}_{\xi}\left(\left(\mathscr{L}_{Y} J\right)^{*} \alpha\right)-\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d}(\xi f)\right) . \tag{7}
\end{equation*}
$$

On the other hand, $\left(R_{Y}^{*} \alpha, R_{Y}^{*} \beta\right) \in \Delta_{\xi, J}^{1} ;$ then we have

$$
R_{\gamma}^{*} \alpha=\mathscr{L}_{\xi}\left(J^{*} R_{\curlyvee}^{*} \alpha\right)-J^{*} R_{\curlyvee}^{*} \beta=\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d} f\right)-J^{*}(\mathrm{~d} g) .
$$

The vector field Y is a symmetry of ξ, therefore $Y \in \chi_{\xi}$. In such a case $R_{Y}=$ $\left(\mathscr{L}_{Y} J\right)\left(\mathscr{L}_{\xi} J\right)$, because

$$
\left(\mathscr{L}_{[\xi, Y]} J\right) J=-J\left(\mathscr{L}_{[\xi, Y]} J\right)=0
$$

since $J\left(\mathscr{L}_{Z} J\right)$ vanishes for all $Z \in \chi(T M)$. Therefore we deduce that

$$
R_{Y}^{*} \alpha=\left(\mathscr{L}_{\xi} J^{*}\right)\left(\mathscr{L}_{Y} J^{*}\right) \alpha=\left(\mathscr{L}_{\xi} J\right)^{*} \mathrm{~d} f+J^{*} \mathscr{L}_{\xi}(\mathrm{d} f)-J^{*}(\mathrm{~d} g) .
$$

Operating on both sides with $\left(\mathscr{L}_{\xi} J\right)^{*}$, we see that

$$
\begin{equation*}
\left(\mathscr{L}_{Y} J\right)^{*} \alpha=\mathrm{d} f+J^{*} \mathrm{~d}(\xi f)+J^{*}(\mathrm{~d} g) \tag{8}
\end{equation*}
$$

Therefore, taking the Lie derivative of (8) with respect to ξ, we obtain

$$
\begin{equation*}
\mathscr{L}_{\xi}\left(J^{*} \alpha^{\prime}\right)=\mathscr{L}_{Y} \alpha+\mathscr{L}_{Y}\left(J^{*} \beta\right)-\mathrm{d}(\xi f)-\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d} g\right) \tag{9}
\end{equation*}
$$

With (9), the relation (7) reduces to

$$
\mathscr{L}_{\xi}\left(J^{*} \alpha^{\prime}\right)=\mathscr{L}_{Y} \alpha+\mathscr{L}_{Y}\left(J^{*} \beta\right)-\mathrm{d}(\xi f)-\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d} g\right) .
$$

Thus we have

$$
\begin{aligned}
\alpha^{\prime}-\mathscr{L}_{\xi}\left(J^{*} \alpha^{\prime}\right) & =-\mathscr{L}_{Y}\left(J^{*} \beta\right)+\mathscr{L}_{\xi}\left(J^{*} \mathrm{~d} g\right) \\
& =-\left(\mathscr{L}_{Y} J\right) \beta^{*}-J^{*}\left(\mathscr{L}_{Y} \beta\right)+\left(\mathscr{L}_{\xi} J\right)^{*} \mathrm{~d} g+J^{*} \mathrm{~d}(\xi g) .
\end{aligned}
$$

But from (6) we deduce

$$
\left(\mathscr{L}_{\xi} J\right)^{*}\left(\mathscr{L}_{Y} J\right)^{*} \beta=\mathrm{d} g .
$$

Now, operating again on both sides with $\left(\mathscr{L}_{\xi} J\right)^{*}$, we obtain

$$
\left(\mathscr{L}_{\gamma} J\right)^{*} \beta=\left(\mathscr{L}_{\xi} J\right)^{*} \mathrm{~d} g
$$

Hence

$$
\alpha^{\prime}-\mathscr{L}_{\xi}\left(J^{*} \alpha^{\prime}\right)=-J^{*}\left(\mathscr{L}_{Y} \beta-\mathrm{d}(\xi g)\right)
$$

or, equivalently,

$$
E_{\xi} \alpha^{\prime}=-J^{*} \beta^{\prime}
$$

and so $\left(\alpha^{\prime}, \beta^{\prime}\right) \in \Delta_{\xi, J}^{1}$.
We invite the reader to establish a generalisation of Noether's theorem for the present situation, as was proposed by Sarlet et al.

Reference

Sarlet W, Cantrijn F and Crampin M 1984 J. Phys. A: Math. Gen. 17 1999-2009

